

Chest X-ray of the

Edit Text: Chest x-ray of the patient with no significant findings

patient showing pleural effusion

Key Contributions

- Image Editing with Null –text inversion
- > Cross attention control for precise modifications using language
- > Identity-preserving Counterfactual (CF) image generation
- High Resolution image synthesis (512x512)

[3] PRISM Framework

PRISM to synthesize high resolution medical images

→ Language-guided image editing for counterfactual image generation

References

- [1] A. Kumar et al,. "Debiasing Counterfactuals in the Presence of Spurious Correlations", MICCAI 2023 FAIMI Workshop.
- [2] F. Perez-Garcia *et al.*, "RadEdit: stress-testing biomedical vision models via diffusion image editing", ECCV 2024.
- [3] B. Kawar et al., "Imagic: Text-based real image editing with diffusion models", CVPR 2023.
- [4] R. Mokady et al., "Null-text inversion for editing real images using guided diffusion models", CVPR 2023.
- [5] J. Irvin et al., "CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison", AAAI 2019.

IV) Accuracies of CF-augmented classifiers

	Pleural Effusion	Cardiomegaly	No Finding	Support Devices
Original Data	0.80	0.87	0.91	0.86
Original Data $+$ SD samples	0.82	0.86	0.91	0.85
Original Data + PRISM CFs	0.88	0.90	0.92	0.88

✤ Augmentation with PRISM CF improves the performance of classifier.

[5] Conclusions

- PRISM is the first framework for high-resolution, language guided medical counterfactual generation with unprecedented precision and clinical relevance.
- PRISM's capabilities
 - > High resolution, high fidelity counterfactual generation
 - Precise medical devices removal using natural language guidance
 - Disease specific pathology modifications in the image
 - Enhance classifier robustness via CF augmentation
- Future directions
 - Out-of-distribution generalization across diverse medical datasets
 - Multi-modal medical imaging applications CT, Skin and MRI
 - Real-time deployment integration within existing clinical workflows

Acknowledgements

The authors are grateful for funding provided by the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advanced Research (CIFAR) Artificial Intelligence Chairs program, Mila - Quebec Al Institute, Google Research, Calcul Quebec, Fonds de recherche du Quebec (FRQNT) and the Digital Research Alliance of Canada.

